A note on the shrinking sector problem for surfaces of variable negative curvature
نویسندگان
چکیده
منابع مشابه
The Circle Problem on Surfaces of Variable Negative Curvature
In this note we study the problem of orbit counting for certain groups of isometries of simply connected surfaces with possibly variable negative curvature. We show that if N(t) denotes the orbit counting function for a convex co-compact group of isometries then for some constants C, h > 0, N(t) ∼ Ceht, as t→ +∞.
متن کاملthe impact of e-readiness on ec success in public sector in iran the impact of e-readiness on ec success in public sector in iran
acknowledge the importance of e-commerce to their countries and to survival of their businesses and in creating and encouraging an atmosphere for the wide adoption and success of e-commerce in the long term. the investment for implementing e-commerce in the public sector is one of the areas which is focused in government‘s action plan for cross-disciplinary it development and e-readiness in go...
A Note on Negative Isotropic Curvature
We prove that any smooth orientable closed four-manifold admits a Riemannian metric with negative isotropic curvature in the sense of Micallef and Moore.
متن کاملOn Mostow rigidity for variable negative curvature
We prove a finiteness theorem for the class of complete finite volume Riemannian manifolds with pinched negative sectional curvature, fixed fundamental group, and of dimension ≥ 3. One of the key ingredients is that the fundamental group of such a manifold does not admit a small nontrivial action on an R -tree.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Steklov Institute of Mathematics
سال: 2017
ISSN: 0081-5438,1531-8605
DOI: 10.1134/s0081543817040150